What is Correlation ?
Correlation indicates how strongly are 2 variables associated. Correlation,however does not imply causation. The value of correlation varies between 0 & 1.
|
Correlation does not mean causation
|
Using a R dataset - mtcars to understand correlation deeper.
> #To read the first few lines of the datset
> head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
>
> #To generate a correlation matrix
> correlations <- cor(mtcars[2:6])
> #Round function can also be used
> # correlations <- round(cor(mtcars[2:6]),2) - Will round to 2 decimal digits
> #Print the result
> correlations
cyl disp hp drat wt
cyl 1.0000000 0.9020329 0.8324475 -0.6999381 0.7824958
disp 0.9020329 1.0000000 0.7909486 -0.7102139 0.8879799
hp 0.8324475 0.7909486 1.0000000 -0.4487591 0.6587479
drat -0.6999381 -0.7102139 -0.4487591 1.0000000 -0.7124406
wt 0.7824958 0.8879799 0.6587479 -0.7124406 1.0000000
>
> #To create a visual plot of the correlations
> corrplot(correlations)
>
|
Correlation matrix |
No comments:
Post a Comment